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Recent developments in deep-ultraviolet
sterilization of human respiratory RNA viruses
Tingzhu Wu1,2†, Shouqiang Lai1†, Zhong Chen1,2 and Hao-Chung Kuo3,4*

Deep-ultraviolet (DUV) sterilization technology using DUV-LEDs has attracted considerable attention owing to its portabil-
ity,  eco-friendliness,  high  potency,  and  broad-spectrum  sterilization.  This  study  compiles  the  developments  of  recent
DUV sterilization  research.  Recent  works  have  investigated  DUV sterilization  from the  perspective  of  device  improve-
ment  and principle investigation:  one employed a novel  epitaxial  structure to optimize the performance and fabrication
cost of DUV-LEDs and realized potent virus disinfection effects for various respiratory RNA viruses, and another work ex-
plained the disinfection phenomenon of SARS-CoV-2 and its variants (Delta and Omicron) in a cryogenic environment.
These studies have contributed significantly to the development of DUV sterilization.
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Deep-ultraviolet (DUV) photonics is an effective steriliz-
ation  technology  that  damages  the  genomes  of  human
respiratory  RNA  viruses1. Mercury  lamps  are  conven-
tionally  used  as  DUV  light  sources  for  sterilization.
However, since  the  introduction  of  the  Minamata  Con-
vention  on  Mercury  in  2020,  the  manufacture,  import,
and export  of  a  myriad of  products  containing mercury
have  been  prohibited.  Therefore,  AlGaN-based  DUV-
LEDs, with the advantages of being pollution-free, small,
energy-conserving, and having a tunable wavelength, are
a  perfect  alternative  to  mercury  lamps  for  DUV
sterilization2.

DUV sterilization technology has been widely studied
for  the  inactivation  of  human  respiratory  RNA  viruses.
However,  many obstacles  remain in the development of
DUV sterilization  with  DUV-LEDs,  which  can  be  di-

vided into three groups. First, fabricating DUV-LEDs on
high-temperature-annealed (HTA)  AlN/sapphire  tem-
plates  introduces  strong  compressive  stress  (SCS)  and
deteriorates  their  external  quantum  efficiency  (EQE),
whereas fabricating DUV-LEDs using AlN single-crystal
substrate is too expensive for industrial application; thus,
the  luminous  efficiency  and  fabrication  cost  of  high-
power DUV-LED light sources require further optimiza-
tion3,4. Second, the differences in the virucidal efficacy of
DUV on SARS-CoV-2 and its variants (Delta and Omic-
ron) under the same dose is unknown5. Third, the prin-
ciple of the lethal effect of DUV on SARS-CoV-2 and its
variants  in  a  cryogenic  environment  (e.g.,  food  cold
chain logistics and outside in winter) has not been clearly
demonstrated6.

To  relax  the  SCS  in  DUV-LEDs  grown  on  HTA 
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AlN/sapphire  templates,  Li  et  al.1 proposed a  novel  epi-
taxial structure of DUV-LEDs with AlN/AlGaN superlat-
tices  (SLs);  the  structure  diagram  is  shown  in Fig. 1(a).
The  X-ray  diffraction  reciprocal  space  mapping  (XRD-
RSM) of DUV-LEDs without and with SLs are shown in
Fig. 1(b–c),  respectively,  indicating  that  the  wafer  with
SLs has a relaxation ratio of ~60%. Moreover, to determ-
ine whether the inactivation effect of DUV-LEDs differs
between virus mutations, pseudotyped SARS-CoV-2 vir-
uses with  different  mutated  spike  proteins  on  their  sur-
faces were used for the irradiation assay. Figure 1(d) in-
dicates  that  the  inactivation effects  of  256  nm LEDs are
not disrupted  by  changes  in  viral  outer  membrane  pro-
teins. These results contribute to the development of ad-
vanced DUV-LEDs for the disinfection of viruses.

To clarify  the  influence  of  SARS-CoV-2  and  its  vari-
ants on DUV virucidal efficacy, the effect of DUV disin-
fection on the Omicron variant was analyzed by Kang et
al.6 They  attributed  the  differences  to  two  possibilities:
gene  sequence  (Fig. 2(a))  and  protein  composition  (Fig.
2(b)). Figure 2(a) shows  the  inactivation  of  (+)  single-
stranded RNA viruses mainly caused by the formation of
uracil/uracil (UU) and uracil/cytosine (UC) dimers after
UV  radiation,  and  the  final  DUV  intensity  radiated  on
the viral RNA chains affected by proteins is indicated in

Fig. 2(b).  In  addition,  the  difference  in  the  extinction
coefficient (k) of Omicron affects the absorption and re-
flectivity for  DUV radiation.  These  factors  make  Omic-
ron significantly different from other strains.

Investigations  on  the  influence  of  temperature  on
DUV disinfection  are  essential  for  DUV applications  in
cold conditions.  Junyong  Kang  and  his  colleagues  pro-
posed a  negative-U  large-relaxation  model  to  demon-
strate  the  DUV  disinfection  process6.  A  comparison
between  the  low-  and  high-temperature  situations  (low
or  high  are  relative)  is  displayed  in Fig. 2(c). These  res-
ults suggest that a cryogenic environment attenuates the
lethal effects of DUV radiation.

These studies  contribute  to  the  development  of  port-
able, long-lasting, and broad-spectrum DUV-LED steril-
ization  applications  for  disinfecting  human  respiratory
RNA viruses,  fill  the  research  gaps  regarding  the  differ-
ences in SARS-CoV-2 and its variants (Delta and Omic-
ron), and clarify the influences of the cryogenic environ-
ment on  DUV virucidal  efficacy.  Future  work  could  re-
search  new  types  of  DUV  light  sources,  such  as  high-
density GaN/AlN quantum dots or directional high-effi-
ciency  nanowire  LEDs,  and  investigate  the  principle  of
surface  roughness  or  nanoparticle  size  for  DUV
sterilization7.
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Fig. 1 | (a) Structure diagram of DUV-LED with SLs. (b−c) XRD-RSMs of the (−105) planes for wafers without and with SLs, respectively. (d) In-

activation effects of 256-nm DUV-LED for different SARS-CoV-2 variants.1
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Fig. 2 | (a) Influence of Omicron variant on DUV disinfection on (a) gene sequence and (b) proteins. (c) Influence of low- (left) and high-temperat-

ures (right) on DUV disinfection.6
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